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Abstract. Objective. Deep learning has been shown to be useful in detecting breast cancer metastases by 
analyzing whole slide images (WSI) of sentinel lymph nodes; however, it requires extensive analysis of all 
the lymph node slides. Our deep learning study attempts to provide a rapid screen for metastasis by analyz-
ing only a small set of image patches to detect changes in tumor environment. Methods. We designed a 
convolutional neural network to build a diagnostic model for metastasis detection. We obtained WSIs of 
Hematoxylin and Eosin-stained slides from 34 cases with equal distribution in positive/negative categories. 
Two WSIs were selected from each case for a total of 69 WSIs. From each WSI, 40 image patches (100x100 
pixels) were obtained to yield 2720 image patches, from which 2160 (79%) were used for training, 240 
(9%)  for validation, and 320 (12%) for testing. Interobserver variation was also examined among 3 users. 
Results. The test results showed excellent diagnostic results: accuracy (91.15%), sensitivity (77.92%), and 
specificity (92.09%), No significant variation in results was observed among the 3 observers. Conclusion. 
This preliminary study provided a proof of concept for providing a rapid screen for metastasis rather than 
an exhaustive search for tumors in all fields of all sentinel lymph nodes.
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Introduction 

In surgery for a patient with breast cancer, the sur-
geon finds and removes the first lymph node(s) to 
which a tumor is likely to spread (called SLNs). To do 
this, the surgeon injects a radioactive substance and/
or a blue dye into the tumor, the area around it, or the 
area around the nipple. Lymphatic vessels will carry 
these substances along the same path that the cancer 
would take. The first lymph nodes that dye or radio-
active substance travel to are the SLNs. The evalua-
tion of breast SLNs is an important component of 
treatment. Patients with a SLN positive for metastatic 
cancer will receive a more aggressive clinical manage-
ment, including axillary lymph nodes dissection. 

The manual microscopic examination of SLNs 
is time-consuming and laborious, particularly in 
cases where the lymph nodes are negative for 
cancer or contain only small foci of metastatic 
cancer [1]. SLNs can be grouped into two types: 
positive for metastasis or negative for metastasis. 
Of the ones that are positive for metastasis, they 
can have macrometastasis (tumor region of at 
least 2.0 mm) or micrometastasis (tumor region 
of at least 200 cells or with size between 0.2 mm 
and 2.0 mm). Of the ones that are negative, they 
can be truly negative, or have isolated tumor 
cells (ITC) only, which is a tumor region of up 
to 200 cells and/or smaller than 0.2 mm [2]. 
Potential morphologic features for metastasis in-
clude pleomorphic nuclei and some features of 
the tumor microenvironment, including lym-
phocytic infiltrates in the stroma, the sinus, and 
follicular hyperplasia [3].
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Due to the large number of SLNs to screen for 
breast cancer metastasis, histopathologic screening 
often presents a challenge to pathologists. An auto-
mated diagnosis using digital images would be 
helpful to assist the pathologist in daily work. In 
this study, we investigate how automated screening 
methods can be combined with microscopic ex-
amination by pathologists to achieve better accu-
racy. We focus on using reactive morphology in 
non-tumor areas of lymph nodes to predict positive 
metastasis. To analyze slides by automated tech-
niques, it is first necessary to scan the slide into the 
computer’s data storage. This process is called whole 
slide imaging (WSI). Techniques of WSI involve 
scanning and compressing the images before they 
are analyzed [4]. WSI offers many advantages such 
as ease of slide sharing and image analysis [5]. 

Previous attempts to digitally classify histologic im-
ages were based on specific criteria (such as nuclear 
shape, nuclear size, texture, etc.) [3,6]. They turned 
out not to be successful [7]. Attention has turned 
to machine learning. Machine learning can be de-
fined as software algorithms that can learn from 
and make predictions on data. This gives the soft-
ware the ability to learn without being explicitly 
programmed. There are numerous machine learn-
ing methods. Some examples are decision trees, 
cluster analysis, support vector machines, random 
forests, Bayesian networks, regression analysis, and 
neural networks [7]. Neural networks consist of 
multiple artificial nodes (“neurons”) connected to 
form a network for prediction/classification [8]. 
This is inspired by biological neural networks. Early 

generations of neural networks used supervised 
training, but this has some disadvantages. One dis-
advantage is that the parameters (such as the 
strengths of the connections between the neurons) 
may not converge, leaving no solution. Another 
disadvantage is that it may not scale well.

Deep learning is the most recent and most disrup-
tive method of machine learning; it is based on 
neural networks. In 2006, major breakthroughs in 
deep learning started. One is unsupervised learn-
ing, which allows a network to be fed with raw data 
(no known outcomes) and discover the representa-
tions needed for detection or classification. Another 
is the use of multiple layers in the network, which 
allows it to extract high-level and complex data rep-
resentations and avoid some of the problems of 
older neural networks. Since such methods perform 
many operations in parallel, they can be speeded up 
by using graphics processing units (GPUs). Studies 
have been done to assess the reproducibility of deep 
learning algorithms by using them to identify the 
tissue of origin from 512x512 pixel tiles. The per-
formance of the algorithm was better than patholo-
gists viewing the same tiles [9]. Deep learning tech-
niques, especially third generation neural networks 
called convolutional neural networks (CNN or 
ConvNet), have quickly become the state of the art 
in computer vision [10]. The ventral visual pathway 
is organized as a hierarchical series of four intercon-
nected visual areas called Brodmann areas. Neurons 
in early areas, such as area V1, respond to compara-
tively simple visual features of the retinal image, 
while later areas, such as area V4, 
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Figure 1. The CNN deep learning model.

2



respond to increasingly complex visual features. 
The specialization of receptor cells is incorporated 
into the design of the CNN as pairs of convolution 
operators followed by a pooling layer (Figure 1) 
[11]. Convolution is an operation in image pro-
cessing using filters to modify or detect certain 
characteristics of an image (such as Smooth, 
Sharpen, Intensify, Enhance). In CNNs, it is used 
to extract features of images. Mathematically, a 
convolution is done by multiplying the pixels’ val-
ues in an image patch by a filter (kernel) matrix and 
then adding them up (Figure 2). This operation is 
also called a "dot product". By moving the filter 
across the input image, one obtains the final output 
as a modified filtered image. The CNN consists of 
interleaved convolutional and max pooling layers 
and then a final fully connected layer (Figure 1) 

[12]. The convolutional layers (C) perform 'feature 
extraction' consecutively from the image patch to 
higher-level features. The max pooling layers (S) 
reduce image size by subsampling. The last 'fully 
connected' layers (F) provide prediction. 
Convolutional neural networks have been used to 
generate heat maps of tumors and tumor-infiltrat-
ing lymphocytes [13,14]. Big companies are analyz-
ing large volumes of data for business analysis and 
decisions, using deep learning technology (Google’s 
search engine, Google Photo, automobile compa-
nies with self-driving cars, and IBM’s Watson). 

The application of deep learning to digital pathol-
ogy imaging has a promising start; it could impact 
personalized diagnostics and treatment. Deep 
learning has also been considered in interpreting 
and integrating multiple sources of information in 
pathology (histology, molecular, etc.) [15]. Recent 
studies have shown promising results in using deep 
learning to detect breast cancer in whole slide imag-
ing of SLNs (examples: Camelyon16, ICIAR 2018) 
[16,17]. However, they require extensive scanning 
and analysis of all the lymph node slides for each 
case. We explore how deep learning could be used 
for breast cancer screening with only a small set of 
image patches (5 patches) from any SLN. Our goal 
is to detect changes in the tumor microenviron-
ment and not the tumor itself (Figure 3). Our ap-
proach is unique since it provides a very rapid 
screen rather than an exhaustive search for tumors 
in all fields of all lymph nodes. We also set out to 
examine the feasibility of looking at either negative 
or positive slides (in the uninvolved area) to predict 
metastasis. The tumor microenvironment has been 
shown to be important in diagnosing the tumor 
[18]. We examined three areas of interest: interfol-
licular lymphocyte-rich area, follicles, and the sinus 
(Figure 3) to see which is best for predicting metas-
tasis. Previous studies have examined tumor-infil-
trating lymphocytes [19,20]. Interobserver varia-
tion was also examined among different users. We 
assessed variation in predictive results with data 
obtained by 3 users.

Materials and Methods

Our study was approved by the Institution Review Board 
at the University of Texas Health Science Center. We ob-
tained WSIs of SLNs using Motic scanners (Motic Easy 
Scan, Motic Instrument, Richmond, BC, Canada) in the 
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Figure 2. Convolution of input with kernel.

Figure 3. Areas of interest in WSI.
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pathology department of the University of Texas-
Houston Medical School to obtain our data. The Motic 
Digital Slide Assistant software (by the same company) 
was used to view the WSIs. SnagIt (TechSmith Corp, 
Okemos, Michigan, USA) was used to capture and auto-
matically save image patches (100x100 pixels) in files 
with JPEG format. Our study includes 34 cases with 
near equal distribution in 4 diagnostic categories:
1. Macrometastasis: 10 cases
2. Micrometastasis: 8 cases
3. Isolated tumor cells (ITC): 6 cases
4. Negative: 10 cases
A positive WSI and a negative WSI were selected from 
each positive case, and two negative WSIs were selected 
from each negative case to obtain a total of 68 WSIs. For 
each WSI, 40 image patches were obtained for a total of 
68x40=2720 image patches. Of the 2720 image patches, 
2160 images (79%) were used for training the model, 
240 (9%) were used for validation, and 320 (12%) for 
testing. We designed the CNN model using the Python 
language together with the TensorFlow and Keras librar-
ies. The model ran on 64-bit Windows 10 Professional 
Edition. Keras allows for parallel computing using 
graphics processing units (GPUs) with the Compute 
Unified Device Architecture (CUDA) by NVIDIA 
(Santa Clara, CA, USA). The hardware was 9th Gen 
Intel® Core™ i7 9700 (8-Core, 12MB Cache, 4.7GHz), 
32GB RAM (DDR4 at 2666MHz), and NVIDIA® 

GPU (GeForce RTX™ 2070, 8GB GDDR6, 2304 
CUDA cores). Our deep learning model used 14 layers, 
including convolution, max-pooling, and dense layers 
(Figure 1).

Results

We looked at different areas of interest in WSIs to 
see which one would be of the most predictive val-
ue (positive vs negative metastasis): 1. Interfollicular 
lymphocyte-rich areas, 2. Follicles, and 3. The sinus 
(Figure 3). The preliminary results indicated that 
areas containing interfollicular lymphocytes are of 
most predictive value (full results not reported in 
this article). Subsequently, our study has been fo-
cusing on this parameter alone.

The image-by-image accuracy of user 1 was found 
to be 161/320=50.31% (Table 1). When the diag-
noses were grouped by rank (i.e., diagnoses 0 and 1 
are considered negative, 2 and 3 are considered 
positive), significantly better accuracy was achieved 
at 275/320=85.93% (Table 2). For each test case, 
the predicted diagnosis was combined from the 
prediction for 5 images (at least 3 or more must 
agree), a process known as “majority voting” (see 
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Table 1. Image-by-image accuracy.

                                    Predicted Diagnosis
 
 Observed Diagnosis    Negative (0) ITC (1)  Micro   Macro
           Met (2)  Met (3)
  
    Negative (0)  42  36  2  0
    ITC (1)    20  54   3  3
    Micro Met (2)   12  2  65  1 
    Macro Met (3)  22  1  57  0
 
Accuracy: 161/320 = 50.31%

Table 2. Grouped ranking.

                                    Predicted Diagnosis
 
 Observed Diagnosis          Negative (0) or ITC (1)     Micro Met (2) or Macro Met (3)

             Negative (0) or ITC (1)       152        8
             Micro Met (2) or Macro Met (3)    37                     123

Accuracy: 275/320 = 85.93%.
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examples in Table 3). This led to a higher accuracy 
of 92.18% (59 sets/64 sets). When majority voting 
was used, we obtained the data in Table 4.
From this, we calculated the accuracy, sensitivity, 
specificity, positive predictive value (PPV), and 
negative predictive value (NPV) for user 1:
Accuracy = 59/64 = 92.18%
Sensitivity=27/(27+5)=84.4%
Specificity=32/(32+0)=100%
PPV=27/(27+0)=100%
NPV=32/(32+5)=86.5%
In a similar manner, we calculated those values for 
the other 2 users. The results were tabulated in 
Table 5. No significant variation was observed 
among the 3 observers. The average results were as 
following: Accuracy = 91.15%, Sensitivity=77.92%, 
Specificity=92.09%, PPV=90.86%, NPV=80.66%

Discussion

Deep learning has been shown to be useful for the 
identification of breast cancer metastases by analyz-
ing whole sections of slide images of SLNs [12,21]. 
Our study focuses on breast cancer screening using 
deep learning with only a small set of image patches 
from any SLN (positive or negative) to detect 
changes in the tumor microenvironment and not 

the tumor itself. Our approach is 
unique since it provides a very rapid 
screen rather than an exhaustive 
search for tumors in all fields of all 
lymph nodes. We obtain excellent 
predictive results for cancer metasta-
sis in this study, which provide a 
proof of concept for incorporating 
automated breast cancer metastatic 
screens into the digital pathology 
workflow to potentially augment the 
pathologists’ productivity. This could 
have a significant impact on health 
economics.

Some limitations of this study are:
1. The model was only validated on 
one hardware platform (Motic 
scanner), 
2. Representative images require pre-
selection of lymphocyte-rich areas, 
3. Lack of explicit diagnostic criteria 
(inherent to deep learning).

Our preliminary study nevertheless provided a 
proof of concept for incorporating automated 
breast cancer screens using digital microscopic im-
ages into the pathology workflow to augment the 
pathologists' QA.  Future studies will need to (a) 
include more hardware platforms and many more 
cases for training and validation, and (b) use auto-
mated segmentation of WSIs for lymphocyte-rich 
areas.

Conclusion. We obtained excellent predictive re-
sults for cancer metastasis from this study: 91% ac-
curacy, 78% sensitivity, and 92% specificity using a 
set of 5 random image patches (100x100 pixels) 
from each test case. There is a potential role for this 
model in clinical work as a QA tool. If a case is posi-
tive by histology, a final diagnosis of metastasis can 
readily be made. For cases that are negative by his-
tology, our model can be used to screen for metas-
tasis. If the screen is negative, a final diagnosis of 
negative metastasis can be made, and if the screen is 
positive, the slide can be re-examined to either find 
the metastases or to make a final diagnosis of nega-
tive metastasis if none is found. In this way, the 
model serves as an extra checking step to help de-
tect metastases that otherwise would be missed 
with just manual examination.

Deep Learning in Rapid Screen for Breast Cancer Metastasis 

Table 3. Examples of majority voting process.

Results for each image   Case-by-case (set of 5)

Observed dx=3, Predicted dx=1  2/5 → Incorrect
Observed dx=3, Predicted dx=0
Observed dx=3, Predicted dx=2
Observed dx=3, Predicted dx=0
Observed dx=3, Predicted dx=2  
Observed dx=2, Predicted dx=2  3/5 → Correct
Observed dx=2, Predicted dx=2
Observed dx=2, Predicted dx=0
Observed dx=2, Predicted dx=0
Observed dx=2, Predicted dx=2  
Observed dx=1, Predicted dx=1  5/5 → Correct
Observed dx=1, Predicted dx=1
Observed dx=1, Predicted dx=1
Observed dx=1, Predicted dx=0
Observed dx=1, Predicted dx=0  
Observed dx=0, Predicted dx=1  4/5 → Correct
Observed dx=0, Predicted dx=2
Observed dx=0, Predicted dx=0
Observed dx=0, Predicted dx=1
Observed dx=0, Predicted dx=1  
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Table 4. Data for majority voting with group ranking for user 1.

      Predicted negative   Predicted positive
Observed negative   32    0
Observed positive    5    27

 Accuracy: 59/64 = 92.18%

Table 5. Accuracy, sensitivity, specificity, PPV, and NPV for all 3 users.

User  Accuracy Sensitivity Specificity PPV  NPV

User 1  92.19  76.88  95  93.89  80.42
User 2  87.5  78.75  89.38  88.11  80.79
User 3  93.75  78.12  91.88  90.58  80.77
Means  91.15  77.92  92.09  90.86  80.66
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